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Abstract - A novel neural network architecture, is proposed and shown to be useful in approximating the 
unknown nonlinearities of dynamical systems. In the variable structure neural network, the number of basis 
functions can be either increased or decreased this is according to specified design strategies so that the 
network will not overfit or underfit the data set. Based on the Gaussian radial basis function (GRBF) variable 
neural network, an online identification of continuous-time dynamical systems is presented. The location of the 
centers of the GRBFs is analyzed using a new method inspired from evolutionary artificial potential fields 
method combined with a pruning algorithm. A minimal number of neuron is guaranteed by using this method. 
It is in noted, that both the recruitment and the pruning is made by a single neuron. By consequence, the 
recruitment phase does not perturb the network and the pruning does not provoke an oscillation of the output 
response. The weights of neural network are adapted so that the dynamics of the system checks the imposed 
performances, in particular the stability of the system. 

Key-words- Variable structure neural network; Radial basis functions, Evolutionary artificial fields, 
Identification of dynamical systems. 

1 Introduction: 
Recently, neural network research has gained 
increasing attention. In fact, artificial neural 
networks are able of learning and reconstructing 
complex nonlinear mappings and they have been 
widely studied by control researchers in 
identification analysis and the design of control 
systems [6], [10], [14], [15], [16], [18], [19]. 
The network size, often measured by number of 
hidden units in a single hidden layer network, 
reflects the capacity of the neural network to 
approximate an arbitrary function. What is the 
required size of the neural network to solve a 
specific problem? the fundamental question in the 
design of neural networks. If the training starts with 
a small network, it is possible that the learning 
process cannot be achieved. On the other hand, if a 
large network is used, the learning process can be 
very slow and an over-fitting may occur. 

The approaches, which assume a priori the number 
of RBFs, usually lead to the problem of poor 
generalization. In addition, these approaches 
usually work offline, so they are not suitable for 
practical real-time applications where the online 
learning is required for the neural-network-based 
controller design. To remedy the aforementioned 
shortcomings, several growing RBF networks have 
been proposed in [9], [11], [12], [20], [24], [27]. 
In using RBF networks, the basis function are 
placed on regular points of a square mesh, for 
example, covering a relevant region of space where 
the state is known to be contained [2], [3], [13]. 
This region therefore is the network approximation 
region, which is in general known for a given 
system. The distance between the points affects the 
number of basis functions required to cover the 
region and hence determines the size of the neural 
network.  
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It seems well that if the size of the neural network 
input vector increases, it will have an excessive 
increases of the neural network size which will 
provoke oscillation in the output responses. 
To remedy theses problems, a novel neural network 
architecture is proposed, where the location of the 
centers of the GRBFs is analyzed using a new 
method inspired from evolutionary artificial 
potential field’s method. 
The weights of neural network are adapted so that 
the dynamics of the system checks the imposed 
performances, in particular the stability of the 
system. 
This paper is organized as follows. Section 2 
provides the design of the continuous-time 
dynamical system approximator. This is done by 
the use of multilayered neural networks for the 
identification of uncertain nonlinear functions. In 
section 3, we describe a novel self-organizing RBF 
network that can dynamically vary its structure in 
real time. The proposed self-organizing RBF 
network is capable of adding or removing RBFs to 
ensure the desired approximation accuracy and at 
the same time to keep the appropriate network 
complexity. The location of the centers of the 
GRBFs is analyzed using a new method inspired 
from evolutionary artificial potential fields method. 
To show the obtained performances of the proposed 
algorithm, section 4 presents two simulation 
examples. The first one deals with a based variable 
structure network on-line identification of a 
nonlinear function. The second example treats the 
on-line identification of nonlinear dynamical 
system. 
 
 

2 Approximation network synthesis 
and analysis 
The nonlinear continuous-time dynamical systems 
that we consider in this paper are modeled by the 
following vector differential equation: 

����� = ������, 
����,         ����� = ��               (1) 

Where ���� ∈ ℝ�, 
��� ∈ ℝ�, ��� ��. , . �: Ω → ℝ� is a continuous vector-valued function of 
many variables defined on a compact set Ω ⊂ℝ��� is the �� 
� space. We assume that the 
function � is unknown to us. Let � ∈ ℝ�×� be a 
Hurwitz matrix as: 

� =
���
� 0 1 0 … 00 0 1 ⋯ 0⋮ ⋮ ⋱ ⋱ ⋮⋮ ⋮ ⋮ ⋱ 1−(� −() −(* … −(�+),--

-.
 

The real numbers (� , () , (*, … , (�+) are chosen 
using the pole assignment technique. 

We express (1), similarly as in [8], in the following 
form: 

����� = ����� + 0�����, 
����,    ����� = ��      (2) 

Where 

0�����, 
���� = −����� + ������, 
����           (3) 

We then analyze an RBF network with � + 1 
inputs and � outputs that we will use to 
approximate the unknown function 0��, 
� in real-
time, equivalently, the unknown dynamical system 
(1), as given in the fig. 1.  

 

 

 

 

 

 

 

 

 

Fig. 1: RBF neural network architecture 
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02�����, 
���� = 3ξ�����, 
����                         (4) 
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Note that the previous approximator has access to 
the system true state. We define the approximation 
error as: 

 7��� = ���� − �2���,                               (6) 

Combining (5) and (6), we obtain the 
approximation error dynamics 

 7���� = �7��� + 0�����, 
���� −02�����, 
����       7���� = 7�                               (7) 

We assume that: 

80�����, 
���� − 02�����, 
����8 ≤ �:               (8) 

Where �: > 0 and ‖. ‖ is the Euclidean norm. 

 
 

2.1 Approximation method: 
The online identification method is introduced by 
fig. 2:  

 

Fig. 2. Diagram of the real-time RBF network 
approximator. 

 

The weights of neural network are adapted so that 
the dynamics of the system checks the imposed 
performances, in particular the stability of the 
system. In fact, by construction, the matrix � is 
Hurwitz. Then, for any given real symmetric 
positive-definite matrix =, the solution > to the 
continuous Lyapunov matrix equation: 

 �?> + >� = −2=                                   (9) 

is symmetric positive definite. Consider then the 
Lyapunov function candidate A�7� = �1 2⁄ �7?>7.  

It’s easily to demonstrate that the time derivative of A is negative definite [8]. 

As it is shown in [8], the adaptation law is given 
by: 

 3� = >CDEF�G>75?��, 
��                   (10) 

It can be written in the following form: 

 6� HI =
J   0   K�    6HI = −L 7� �>75?��, 
��HI < 00   K�    6HI = L 7� �>75?��, 
��HI > 0G�>75?��, 
��HI    7NO7 P    (11) 

where ( = 1, … , Q and E = 1, . . , R, 6HI is the 

weight from the EST RBF to the (ST output neuron. �>75?��, 
��HI is the element in the (ST row and 

the EST column of matrix >75?��, 
�. L and G are 
design parameter. 
 
 

3 Variable structure neural network 
There are five parameters characterizing the RBF 
network approximation to be determined: 
 

- The number of RBFs U 
- The type of the RBF 5I��, 
�; 
- The location of the center V�I�; 
- The radius in each coordinate WX�I�; 
- The weight vector for each output neuron LH; 

 
In this section, we present a novel RBF network 
structure that is capable of determining the number 
of RBFs U, the location of the center V�I� and the 
weight vector for each output neuron LH by itself. 
The determination of LH is already seen in the 
section 2. We first show how to determine the 
location of the center V�I�. The strategy of 
determination of the number of RBFs needed in the 
proposed online identification problem will be 
discussed in section 3. The proposed self-
organizing RBF network is capable of adding or 
removing RBFs to ensure the desired 
approximation accuracy and at the same time to 
keep the appropriate network complexity. 
 
 
3.1 Determination of the RBFs location 
center 
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In using RBF networks, the basis function are 
placed on regular points of a square mesh, for 
example, covering a relevant region of space where 
the state is known to be contained [2], [3]. This 
region therefore is the network approximation 
region, which is in general known for a given 
system. The distance between the points affects the 
number of basis functions required to cover the 
region and hence determines the size of the neural 
network.  
It seems well that if the size of the neural network 
input vector increases, it will have an excessive 
increases of the neural network size which will 
provokes oscillation in output responses. 

To remedy theses problems, a novel neural network 
architecture, is proposed, where the location of the 
centers of the GRBFs, is analyzed using a new 
method inspired from evolutionary artificial 
potential field’s method. 
 
 

3.2 The Artificial Potential Field 
This method is especially used in the real-time 
robot path planning. In the artificial potential field 
methods, a robot is considered as a particle under 
the influence of an artificial potential field Y whose 
local variations reflect, for instance, the positions of 
obstacles and of the goal that the robot is supposed 
to reach [17], [21], [23], [26]. The potential field 
function is defined as the sum of an attraction field 
that pulls the robot towards the goal and a repulsive 
field that repels it forms the obstacles. The 
movement is executed in an iterative way, in which 
an artificial force is induced by: 

 Z[�\� = −∇̂̂[Y�\�                                    (12) 

which forces the robot to move to the direction that 

the potential field decrees, where ∇̂̂[ the gradient 
with respect to \ and \ = ��, _� which represents 
the coordinates of the robot position. The complete 
potential field is a superposition of contributions 
from obstacles, waypoint (if applicable), and the 
goal: 

Y�\�  =  ∑ YI��\��aIb)  + ∑ YIc�\��dIb)  + Y:�\�  

                                                                     (13) 

where �� and �c denote the number of obstacles 

and waypoints, respectively, and YI� and YIc are 

their potential. Y: is the potential generated by the 
goal (navigation target). 

In our approach, a neuron plays the role of the 
robot, the other neurons play the roles of the 
obstacles and the current true state of the system, is 
the goal point 

Different potential functions have been proposed in 
literature. The most commonly used attractive 
potential take the form [22], [25]:  

YeSS�\� =  )* fg��\, \:hei�                               (14) 

where f is a positive scaling factor, g�\, \:hei� =8\:hei − \ 8 is the distance between the neuron \ 

and the goal \:hei, and 1 = 1 or 2. For 1 = 1, the 

attractive potential is conic in shape and the 
resulting attractive force has constant amplitude 
except at the goal, where YeSS  is singular. For 1 = 2, the attractive potential is parabolic in 
shape. The corresponding attractive force is then 
given by the negative gradient of the attractive 
potential: 

 ZeSS�\� =  − ∇YeSS�\� = f�\:hei −  \� 8\:hei −  \8j                              (15) 

which is a constant force on the space: it does not 
tend to infinity with increasing distance from \:hei. 
However, it is not zero at \:hei. 
One commonly used repulsive potential function 
takes the following form [1]: 

 Yklm�\� =
 n )* o p )q�r,rstu� − )qav*    K� g�\, \�lw� ≤ g�0                                       K� g�\, \�lw� > g�

P      (16) 

Where o is a positive scaling factor, g�\, \�lw� 
denotes the minimal distance from the center of 
neuron \ and the center of other neuron, \�lw 
denotes the center of the nearest neuron, and g� is a 
positive constant denoting the distance of influence 
of the neuron. The corresponding repulsive force is 
given by: 
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 Zklm�\� =  − ∇Yklm�\� 

 = 

no p )q�r,rstu� − )qav )q�r,rstu�x ∇g�\, \�lw� K� g�\, \�lw� ≤ g�          0                                     K� g�\, \�lw� > g�         P        
                                                                            (17) 

The total force applied to the neuron is the sum of 
the attractive force and the sum of the repulsive 
force : 

 ZShSei =  ZeSS +  ∑ Zklm                       (18) 

This determines the motion of the neuron. 

The attractive and the repulsive phenomena are 
given in fig. 3.  

 

 
 

Fig. 3: The Artificial potential field 

The parameters f, o ��� g� are chosen so that we 
obtain a scenario similar to fig. 4. We obtain 
concentrations of neurons in a ball of dimension 
(� + 1) centered in the desired point. By 
construction we obtain several layers (or orbit) of 
radius  CX ≈ K. W were K the rank of the orbit and W is 
the width of the GRBF. 

 
 
 
 

 

 
 
 
Fig. 4: Location of the GRBF in the space ��K1 = 2� 

 
 

3.3 Determination of the number N 
The proposed self-organizing RBF network is 
capable of adding or removing RBFs to ensure the 
desired approximation accuracy and at the same 
time to keep the appropriate network complexity. 
 
3.3.1 Adding RBFs 
As the system trajectory evolves in time, the 
approximation error 7 is measured. We first check 
if the Euclidean norm of the approximation error ‖7‖ exceeds a predetermined threshold 7�ez, and 
the period between the two adding operations is 
greater than the minimum response time {k.  7�ez 
and {k are design parameters. If these two 
conditions are satisfied, we recruit a new neuron 
which will be placed on a neighborhood of the last 
orbit. It is noted, that the recruitment is made by a 
single neuron. Consequently, the recruitment phase 
does not perturb the network.  
 
3.3.2 Removing RBFs, 
The RBF removing operation is also implemented 
sequentially for all U coordinates. We first measure 
the approximation error 7. If the Euclidean norm of 
the approximation error ‖7‖ is smaller than |7�ez, 
where | ∈ �0, 1� is a design parameter, we remove 
a neuron from the last orbit. It is in noted, that the 
pruning is also made by a single neuron, which 
aims at not provoking an oscillation of the output 
response. 
 
3.4 Self-Organizing RBF Network 
Algorithm 
 
Choose the design parameters �, =, �STkl}Thi~, 

N 

G : Goal 

N :Neuron 
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 7�ez, |, {k, {~, G, ��� L. Initialize some GRBFs in 
a neighborhood of the initial condition and the 
weight matrix 3 of the initial RBF network. In 
each sampling period, repeat the following steps. 
 

1) Compare the current true state � of (2) and 
the current approximated state �2 of (5) to 
obtain the approximation error 7 = � − �2. 

2) If ‖7‖ > 7�ez and the period between two 
adding operation is greater than {e, go to 
3); otherwise, go to 4). 

3) Add a new neuron which will be placed on 
a neighborhood of the last orbit. The radius 
of this orbit is given by: CX���� =�Kie}S + 1�. W; where Kie}S is the rank of the 
last layer. 

4) If ‖7‖ ≤ |. 7�ez , go to 5); otherwise go to 
6). 

5) Remove a neuron from the last orbit 
6) Update the weight matrix 3 using (11). 
7) Compute 02 using (4) in the uniform grid, 

and then evaluate the approximated state �2 
using (5). 

8) Determination of the motion of the GRBF in 
the space using (18). 

 
 
4 Simulation results 
In this section, we test our proposed real-time self-
organizing RBF network approximator on two 
examples: the first one deal with the on-line 
identification of a nonlinear function using the 
gradient method. The second example treats the 
real-time approximation of nonlinear dynamical 
system using the adaptation law given in equation 
(11). 

 
4.1 On-line identification of a nonlinear 
function 

 
For this problem, the considered nonlinear function 
is described by the following equation: 

 
 _��), �*� = �* cos��)� + 2OK���)�      (17) 
 

The aim is to seek an optimal number of RBF using 
the proposed algorithm, to approximate adaptively 
the function with small error. 
Based on simulation studies, the parameters of the 
proposed algorithm are chosen as follows: 

 7�ez = 0.1,   | = 0.5,   W = 0.5,g� = 2. W,   o = 1.5 
 

The initial number of the hidden units is chosen as U = 4. 
 

Fig. 5 shows the simulation results of the process 
using the proposed algorithm. Fig. 5.(a) and fig. 
5.(b) show respectively, the evolution of �)��� and �*���. The evolutions of the desired function and 
its estimate are given in fig. 5.(c) and fig. 5.(d) 
respectively. It is clear that the approximation error 
is so acceptable. Fig. 5.(e) represents the evolution 
of the hidden units number. It’s noted that we used 
a minimal number of neuron on this simulation. 
Fig. 5(f) represents the localization of the centers of 
the used RBFs. It’s obvious that the centers are 
joined together all around the state ��), �*� to be 
estimated. 
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4.2 Online identification of nonlinear 
dynamical system 
This example illustrates a one-link rigid robotic 
manipulator. The dynamic equation of the one-link 
rigid robotic manipulator is given by [5]: 

 
 1N*\� + �\� + 1N0�DO�\� = 
              (18) 
 

where the link is of length N and masse 1, and \ is 
the angular position with initial value \�0� = 0.1 
and \� �0� = 0. 
The parameters 1 = 1, N = 1, � = 1,  and 0 = 1. 
The above dynamical equation can be written as the 
following state equation: 

 

 ���) = �*                            ��* = �* − �DO��)� + 
P                        (19) 

 
Based on simulation studies, the parameters of the 
proposed algorithm are chosen as follows: 

 �� = p 0 1−1 −2v , = = p1.9 00 −1.9v,G = 2 ,L = 0.1,7�ez = 0.1, | = 0.5, W = 0.5, o = 1.5 
 
The initial number of the hidden units is chosen as U = 9. 

 
Fig. 6 shows the simulation results of the process 
using the proposed algorithm. Fig. 5.(a) and fig. 

Fig. 5. (a) and (b) Evolution of �) and �* 
respectively. (c) and (d) Evolution of the 
desired function and its approximation 
respectively. (e) Evolution of the RBF’s 
number. (f) Location of RBF center (o) and 
state (-) 
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5.(b) show the evolution of the state �)��� and its 
approximation respectively. The evolutions of the 
real state �*��� and its estimate are given in fig. 
5.(c) and fig. 5.(d) respectively. It is clear that the 
approximation error is acceptable. The chattering 
presented in the curve of the evolution of �)��� and �*��� is due to the use of the given identification 
algorithm. Fig. 5.(e) represents the evolution of the 
hidden units number. It’s clear that we used a 
minimal number of neuron on this simulation.  

 
Comparing with other works [3], [5], [7], [8], it is 
so clear that we used a minimal number of neuron 
while respecting the imposed performances. We 
can notice, too, that the recruitment is made by a 
single neuron. As a consequence, the recruitment 
phase does not perturb the network. 
 
 

5 Conclusion 
An online identification of continuous-time 
dynamical systems is presented. A novel neural 
network architecture, is proposed and shown to be 
useful in approximating the unknown nonlinearities 
of dynamical systems. In the variable structure 
neural network, the number of basis functions can 
be either increased or decreased with time 
according specified design strategies so that the 
network will not overfit or underfit the data set. 
Based on the Gaussian radial basis function of 
variable neural network, the location of the centers 
of the GRBFs is analyzed using a new method 
inspired from evolutionary artificial potential fields 
method combined with a pruning algorithm. 
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